大约在1660年,德国马德堡的盖利克发明了第一台摩擦起电机。他用硫磺制成形如地球仪的可转动球体,用干燥的手掌摩擦转动球体,使之获得电。盖利克的摩擦起电机经过不断改进,在静电实验研究中起着重要的作用,直到19世纪霍耳茨和推普勒分别发明感应起电机后才被取代。
&世纪电的研究迅速发展起来。1729年,英国的格雷在研究琥珀的电效应是否可传递给其他物体时发现导体和绝缘体的区别:金属可导电,丝绸不导电,并且他第一次使人体带电。格雷的实验引起法国迪费的注意。1733年迪费发现绝缘起来的金属也可摩擦起电,因此他得出所有物体都可摩擦起电的结论。他把玻璃上产生的电叫做“玻璃的”,琥珀上产生的电与树脂产生的相同,叫做“树脂的”。他得到:带相同电的物体互相排斥;带不同电的物体彼此吸引。
&年,荷兰莱顿的穆申布鲁克发明了能保存电的莱顿瓶。莱顿瓶的发明为电的进一步研究提供了条件,它对于电知识的传播起到了重要的作用。
差不多同时,美国的富兰克林做了许多有意义的工作,使得人们对电的认识更加丰富。1747年他根据实验提出:在正常条件下电是以一定的量存在于所有物质中的一种元素;电跟流体一样,摩擦的作用可以使它从一物体转移到另一物体,但不能创造;任何孤立物体的电总量是不变的,这就是通常所说的电荷守恒定律。他把摩擦时物体获得的电的多余部分叫做带正电。物体失去电而不足的部分叫做带负电。
严格地说,这种关于电的一元流体理论在今天看来并不正确。但他所使用的正电和负电的术语至今仍被采用,他还观察到导体的尖端更易于放电等。早在1749年。他就注意到雷闪与放电有许多相同之处,1752年他通过在雷雨天气将风筝放入云层,来进行雷击实验,证明了雷闪就是放电现象。在这个实验中最幸运的是富兰克林居然没有被电死,因为这是一个危险的实验,后来有人重复这种实验时遭电击身亡。富兰克林还建议用避雷针来防护建筑物免遭雷击,1745年首先由狄维斯实现,这大概是电的第一个实际应用。
富兰克林联想到往莱顿瓶里蓄电的事,于1752年6月做了一个把风筝放到雷雨云里去的实验。其结果。发现了雷雨云有时带正电有时带负电的现象。这个风筝实验很有名,许多科学家都很感兴趣,也跟着做。1753年7月,俄罗斯科学家利赫曼在实验中不幸遭电击身亡。
通过用各种金属进行实验,意大利帕维亚大学教授伏打证明了锌,铅,锡,铁,铜。银,金,石墨是个金属电压系列,当这个系列中的两种金属相互接触时。系列中排在前面的金属带正电,排在后面的金属带负电。他把铜和锌做为两个电极置于稀硫酸中,从而发明了伏打电池。电压的单位“伏特”就是以他的名字命名的。
&世纪初。正是法国大革命后进入拿破仑时代。拿破仑从意大利归来,在1801年把伏打召到巴黎。让他做电实验,伏打也因此获得了拿破仑授予的金质奖章和莱吉诺-多诺尔勋章。
3.伏打电池的利用与电磁学的发展
伏打电池发明之后。各国利用这种电池进行了各种各样的实验和研究。德国进行了电解水的研究,英国化学家戴维把2000个伏打电池连在一起,进行了电弧放电实验。戴维的实验是在正负电极上安装木炭,通过调整电极间距离使之产生放电而发出强光,这就是电用于照明的开始。
&年,丹麦哥本哈根大学教授奥斯特在一篇论文中公布了他的一个发现:在与伏打电池连接了的导线旁边放一个磁针,磁针马上就发生偏转。
俄罗斯的西林格读了这篇论文,他把线圈和磁针组合在一起,发明了电报机(1831年),这可说是电报的开始。
其后,法国的安培发现了关于电流周围产生的磁场方向问题的安培定律(1820年),法拉第发现了划时代的电磁感应现象(1831年),电磁学得到了飞速发展。
另一方面,关于电路的研究也在发展。欧姆发现了关于电阻的欧姆定律(1826年),基尔霍夫发现络的定律(1849年),从而确立了电工学。
有线通信
3.有线通信的历史
有人说科学技术是由于军事方面的需要而发展起来的,这种说法有一定的历史事实根据。
英国害怕拿破仑进攻,曾用桁架式通信机向自己的部队进报法**队的动向。瑞典,德国,俄罗斯等国家也以军事为目的,架设了由这类通信机组成的通信网,据说都曾投入了庞大的预算。
将这种通信机改造成电通信方式的构想大概就是有线通信的开始。
&有线通信的原理
除了将前面所讲到的西林所发明的电磁式电报机以外,还有德国的简梅林发明的电化学式电报机,高斯和韦伯(德国)的电报机,库克和惠斯能(英国)的5针式电报机等。电报机的形式也是各种各样的,有音响式,印刷式,指针式,钟铃式等。其中,库克和惠斯通的5针式电报机最为有名。1837年,这种电报机曾通过架设在伦敦与西德雷顿之间长达20公里的5根电线而投入实际使用。
2.莫尔斯电报机
&年,莫尔斯电报机在美国研制成功,发明人就是以莫尔斯电码而闻名的莫尔斯。莫尔斯电码是一种以点,划来编码的信号。
莫尔斯本